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Abstract. This paper proposes the application of an elec-
tronically controlled current-mode for a level shifted multi-
carrier PWM generator. The proposed circuit consists of 
two multiple-output current follower transconductance 
amplifiers (MO-CFTAs) for the multiple-output triangular 
generator and four current follower transconductance 
amplifiers (CFTAs) for the signal comparator. The char-
acteristics of the circuit are as follows: the current output 
can be controlled by bias current, the maximum amplitude 
deviation due to temperature variation is less than 1.37 % 
and the power consumption is approximately 0.744 W, at 
±1.5 V supply voltages. The proposed PWM has been veri-
fied through PSpice simulation results which are in con-
sistent with the theoretical analysis.  

Keywords 
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1. Introduction 
Multilevel voltage source inverters have been widely 

used for high power applications such as water pumping 
stations, exhaust gas fans, induction motor controller, reac-
tive power compensation, grid integration of renewable 
energy, and more different applications [1]-[8]. This is 
because they have many advantages such as low power 
dissipation on power switches, low harmonic contents and 
low electromagnetic interference (EMI) outputs.  

Fig. 1 shows a classification of the multilevel voltage 
source inverter topologies that is divided at two groups: 
single and multiple DC source topologies. These topologies 
consist of many switches for generating the multilevel 
output voltage. To control the operation of these switches, 
the general basic pulse-width modulation (PWM) such as 
sinusoidal PWM or space vector PWM cannot be directly 
used. Thus, the complex PWM techniques have been used 
and can be divided at two groups: low and high switching 
frequency techniques as shown in Fig. 2. Generally, the 
switching loss and the percentage of total harmonic distor-
tion (THD) are used for selecting the modulation strategies 
[9]. However, in some applications, the simple modulation 
strategies are required. The simple modulation techniques 

for the multilevel voltage source inverters are the multicar-
rier PWM technique which has two groups: In the phase 
shifted PWM, the phase difference of triangular carriers is 
used in modulation process. While the level shifted PWM 
the amplitude difference of triangular carriers is used. 
However, the most popular and simple switching scheme 
for controlling the multilevel voltage source inverters is 
level shifted PWM [10]. 

Multilevel Converters

Multiple DC Source Single DC Source 

Cascaded H-Bridge Flying Capacitor Neutral Point Clamped

Unequal DC Source Equal DC Source
 

Fig. 1.  A classification of the multilevel converters. 

 

Fig. 2.  A classification of the multilevel modulation topolo-
gies.  

The level shifted multicarrier PWM can be distin-
guished in three methods: Phase Disposition (PD), Phase 
Opposition Disposition (POD) and Alternative Phase Op-
position Disposition (APOD) as shown in Fig. 3. The PD 
method gives the lowest harmonic distortion at high 
modulation indices when compared to the other methods 
[11], [12]. Moreover, this method is an optimal solution 
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when used in carrier-based space-vector PWM for three-
phase inverter [13]. However, in this paper, all methods 
will be examined in simulation results. 

 
Fig. 3. Three basics of the multicarrier modulation topologies.  

In recent year, most of analog circuit design uses 
a current-mode technique because this technique has more 
potential advantages such as wide bandwidth, large dy-
namic range, simple circuit and good linearity [14-21]. The 
mix-mode device current follower transconductance ampli-
fier (CFTA) proposed in 2011 [22] is very suitable for the 
design and synthesis analog circuit and signal processing, 
and its transconductance gain can be controlled by the 
corresponding bias current. Moreover, using CFTA as 
an active element is more desirable in applying 
an automatic control. Furthermore, it provides the system 
with simpler circuits than its counterparts [23]. 

From above mentioned, this paper proposes the appli-
cation of CFTA and its modified-version, MO-CFTA, to 
generate the level shifted multicarrier PWM. The feature of 
the proposed circuit which is very simple consists of two 
MO-CFTAs, four CFTAs and one grounded capacitor. 
Moreover, the output signals are independent of tempera-
ture. This paper is organized as the following sections. 
Section 2 presents basic concept of MO-CFTA, saturation-
mode on MO-CFTA, triangular carrier generation, com-
parator and principle of the proposed level shifted multicar-
rier PWM configuration. Section 4 shows the simulation 
results by PSpice program. In Section 5, the conclusion is 
presented. 

2. Level Shifted Multicarrier PWM 
Circuit Design 
In this section, we present the basic concepts of MO-

CFTA for triangular carrier generation and CFTA for sig-
nal comparator. While, the circuit design for the proposed 
level shifted PWM will be presented in the last subsec- 
tion 2.6.   

2.1 Basic Concept of MO-CFTA 

Fig. 4(a) shows the symbol of MO-CFTA that con-
sists of nine-port analog and two ports for current bias. 
While Fig. 4(b) shows its equivalent circuit. 
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Fig. 4.  Basic concept of MO-CFTA.  

In an ideal case, the relationship between current and 
voltage can be found to be 
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where  ,xc x xc xI I I I   ,    (2) 

and  1 2
1 2,

2 2
B B

m m
T T

I I
g g

V V
    (3) 

where gm1 and gm2 are the transconductance gain of the 
MO-CFTA based on BJT technology, VT is the thermal 
voltage and is equal to 26 mV at 27 C , and IB1 and IB2 are 
bias currents used to adjust transconductance gain.  
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2.2 Saturation-Mode on MO-CFTA 

From the MO-CFTA properties depicted in Section 
2.1, when VZ << 2VT, the output currents at x  (Ix) and x  
(I-x) ports are equal to VZIB1/(2VT) and VZIB2/(2VT), respec-
tively. The DC transfer characteristics of MO-CFTA can 
be approximated by the first order Taylor’s series expan-
sion [15], which can be explained as: 

 

3 5 71 2 17
tanh ...

3 15 315
x x x x x     .    (4)

 

Thus, the original xI  and xI  can be found by  
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Because the z  port is floated, therefore, the output voltage 
at the z port can be approximated:  
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where VCC and VEE are the positive and negative supply 
voltages, respectively. From (6), it can be clearly seen that 
VZ >> 2VT. Then tanh(VZ/(2VT)) in (4) and (5) can be 
approximately simplified to be 
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The condition of the MO-CFTA operates in the saturation-
mode when VZ >> 2VT. Thus the output currents at x  and 

x  terminals can be re-written from (4) and (5) to be 
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2.3 Current-Mode Multiple-Output 
Triangular Carrier Generation 

The block diagram of the current-mode multiple-out-
put triangular generation which is employed in the pro-
posed circuit is shown in Fig. 5. It consists of two MO-
CFTAs and one grounded capacitor. The MO-CFTA1 and 
MO-CFTA2 perform to be Schmitt trigger and integrator, 
respectively. The triangular-wave outputs can be generated 
via the alternately discharging and charging of capacitor 
which is demonstrated in Fig. 6.  

From the properties of MO-CFTA as described in 
Section 2.1 and 2.2, 2xI  can be found to be  

 2 4 2x m zI g V  .    (10) 




 

Fig. 5.  Multiple-output triangular generation. 
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Fig. 6.  Output waveforms of the multiple-output triangular 
generation.  

Thus 2zV  can be expressed to be 
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The amplitude of outputs  1 6tr trI I  can be obtain by 
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From (11), (12)-(13) can be rewritten as 
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From the DC characteristic of MO-CFTA explained 
in Section 2.1, it can be found that 2xI  depends on 1BI . 

Then 1 6tr trI I  can be ultimately written to be 
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Period T and output frequency can obtained by 
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From (16), (17) and (19), it can be clearly seen that 
the magnitude and frequency of the output current can be 
electronically/independently controlled. In addition, the 
amplitude of output currents is free from VT. Furthermore, 
the multiple-output triangular carrier generation is very 
suitable for applying in the multicarrier PWM more than 
another research option [24-37] which merely have a single 
output. 

2.4 Current-Mode Comparator 

Fig. 7 shows the block diagram of the current-mode 
comparator. The triangular carrier, IC1, is subtracted from 
the information signal, ii. Its result is sent to be an input of 
the comparator circuit. Equation (20) shows the condition 
of the output current of the comparator circuit, which can 
be explained by Fig. 8.    
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Fig. 7.  Current-mode comparator (in case comparator 1).  
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Fig. 8.  DC characteristic of the current-mode comparator.  

2.5 Current-Mode PWM Process 

In this subsection, we explain the current mode PWM 
process. Fig. 9 shows the PWM signal that is generated by 
triangular carrier comparing with information signal. When 
the amplitude of triangular carrier is higher than that of 
information signal this produces the negative PWM signal, 

1T , which can be  found as following:  

4 refI

2 refI

 
Fig. 9.  Output waveforms of the proposed PWM (in case IO1).  

The slope of 1CI   1Cm , 1t  and 2t  can be found to be 
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From Fig. 9 and (22)-(23), 1T  can be expressed as  
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From the piecewise linear approximation and the high 
frequency carrier signal      1 2 2i i ii t i t i t  . Thus (24) 

can be modified to be  
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Thereby, the duty cycle of 1OI  can be obtained by  
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Similarly, the duty cycle of 2OI , 3OI , and 4OI  can be found 

to be 
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where D1, D2, D3 and D4 are duty cycle of 1OI , 2OI , 3OI , 

and 4OI , respectively.  

From (26) and (29), if ii(t) is equal to 3Iref and -3Iref  
resulting D1 and D4 are equal to 50% and if ii(t) is equal to 
Iref resulting D2 and D3 are equal to 50%. While, if 
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From the properties of MO-CFTA and the operation 
of current-mode comparator described in Section 2.2 and 
Section 2.5, respectively, the amplitudes of 2OI , 3OI , and 

4OI  can be expressed as: 
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From (20) and (32)-(34), it can be found that the cur-
rent level of 1OI , 2OI , 3OI  and 4OI  can be adjusted via bias 

currents. Furthermore, the amplitude of output currents is 
ideally temperature-insensitive by reason of liberty VT. 

2.6 Principle of the Proposed Level Shifted 
Multicarrier PWM 

From the detail in Subsection 2.1-2.5, we use them to 
be information for designing the level shifted PWM circuit. 
Fig. 10 shows the block diagram of the proposed configu-
ration. It consists of the multiple-output triangular carrier 
generation (circuit in Fig. 5) and four comparators (circuit 
in Fig. 7). Fig. 11, 12 and 13 illustrate the modulation 
process for PD, POD and APOD, respectively. From the 
process, they require the different DC level and phase of 
the triangular carrier signals. These requirements can be 
adjusted by Iref and selecting the output ports of the circuit 
in Fig. 5, respectively.  
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Fig. 10.  Block diagram of the proposed level shifted 

multicarrier PWM. 
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Fig. 11.  Output waveforms of the PD level shifted multicarrier 

PWM. 
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Fig. 12. Output waveforms of the POD level shifted 
multicarrier PWM. 

 
Fig. 13.  Output waveforms of the APOD level shifted 

multicarrier PWM. 

 
Fig. 14. Internal construction of MO-CFTA. 

 

3. Simulation Result 
The performances of the proposed level shifted multi-

carrier PWM have been confirmed via the simulation re-
sults by PSpice program. The schematic of MO-CFTA is 
shown in Fig. 14. The parameter of PNP and NPN transis-
tors employed in the proposed circuit were simulated by 
using the parameters of the PR200N and NR200N bipolar 
transistors of ALA400 transistor array from AT&T [38]. 
DC power supply voltages are equal ±1.5 V, C = 200 nF, 
IA = 100 µA, IB1 = 100 µA, IB2 = 25 µA, IB3 = 95 µA, 
IB4 = 45 µA, and IB = IB5 = IB6 = IB7 = IB8 = 100 µA.  

The simulation results in case of PD, POD and APOD 
are shown in Figs. 15-17. The output amplitude relative to 
the IB variation is illustrated in Fig. 18. It can be clearly 
seen that the level of output current can be electronically 
adjusted by bias currents which are tuned from 0 to 
800 A.  
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(b) The output signals. 

Fig. 15.  Results of the PD level shifted multicarrier PWM.  
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Fig. 16.  Results of the POD level shifted multicarrier PWM.  
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Fig. 17.  Results of the APOD level shifted multicarrier PWM. 
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Fig. 18.  Amplitude of output versus IB.  

The theoretical calculation and simulation of duty 
cycle is shown in Fig. 19. It can confirm that the results are 

in accordance with a theoretical analysis which is demon-
strated in Section 2.6. The THD of the proposed PWM is 
approximately 2.68 % which is less than [16], [17], and 
[36]. 
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Fig. 19. Duty cycles against ii(t).  

The deviation of the output amplitude relative to tem-
perature variation is demonstrated in Fig. 20. It can be 
found that the maximum absolute deviation of the level of 
output current is less than 1.37 % for temperature variation 
between 0 – 100°C. Therefore, it can be concluded that the 
amplitude of output currents is slightly dependent on wide 
temperature variation.  

Temperature (oC)

0 20 40 60 80 100

A
m

pl
it

ud
e 

D
ev

ia
ti

on
 (

%
)

-1.5

-1.0

-.5

0.0

.5

1.0

 
Fig. 20.  Amplitude of PWM output versus temperature. 

4. Conclusion 
A novel current-mode PD, POD and APOD level 

shifted multicarrier is beneficial because the proposed 
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circuit comprises two MO-CFTAs, four CFTAs and a 
grounded capacitor without external resistor. The output 
current can be electronically controlled and is slightly de-
pendent on wide temperature variation. The simulation 
results confirm that the theoretical expectation is possible. 
Moreover, this proposed circuit can be improved in further 
research which needs to use a multicarrier PWM applica-
tion. 
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